Name \qquad Period: \qquad Date \qquad

Sex-Linked Traits Worksheet

Background Information:

Sex-linked traits are those whose genes are found on the X chromosome but not on the Y chromosome. In humans the X chromosomes are much larger than the Y chromosome and contains thousands of more genes than the Y chromosome. For each of the genes that are exclusively on the X chromosomes, females, who are XX , would obviously have two alleles. Males, who are XY, would have only one allele. Thus females with one recessive allele and one dominant allele, for a gene that is unique to the X chromosome, will always display the dominant phenotype. However, a male with a recessive allele for a gene unique to the X chromosome will always exhibit that recessive trait because there is no other corresponding allele on the Y chromosome.

In humans, each of two different sex-linked genes has a defective recessive allele that causes a disease. The diseases are hemophilia and colorblindness. In hemophilia, the defective allele prevents the synthesis of a factor needed for blood clotting. In colorblindness, the defective allele prevents a person from seeing certain colors.

Use the information below to answer the following questions.

$X^{H}-\mathrm{X}$ chromosome with normal dominant allele (no hemophilia)
$X^{h}-X$ chromosome with recessive hemophilia allele
Y - Y chromosome (does not contain comparable gene)
$X^{B}-X$ chromosome with normal dominant allele (not colorblind)
$X^{b}-X$ chromosome with recessive colorblind allele
Y -Y chromosome (does not contain comparable gene)

1. Write the genotypes for the following phenotypes of red-green color blindness.
a. normal male \qquad
b. normal female carrying no colorblind alleles (Homozygous) \qquad
c. colorblind male \qquad
d. normal female carrying the colorblind allele (Heterozygous) \qquad
e. colorblind female \qquad
2. $X^{B} X^{B} \quad X \quad X^{b} Y$
a. What proportion/percent of the male children are colorblind? \qquad
b. What proportion/percent of the female children are colorblind? \qquad
3. $X^{B} X^{b} \quad X \quad X^{B} Y$
a. What proportion of the male children are colorblind? \qquad

4. What is the probability that a colorblind woman who marries a man with normal vision will have a colorblind child? \qquad
b. What proportion of the female children are colorblind? \qquad

\qquad
路
\qquad X \qquad

5. A normal-sighted woman (whose father was colorblind) marries a colorblind man. \qquad X \qquad

a. What is the probability that they will have a son who is colorblind? \qquad
b. What is the probability that they will have a colorblind daughter? \qquad

For the following Sex-Linked Punnett Squares:

$\mathrm{H}=$ normal blood clotting
H = hemophilia
6. $X^{H} X^{h} \quad x \quad X^{H} Y$
a. What is the probability that any of their offspring will have hemophilia? \qquad

7. A woman who is a carrier for hemophilia marries a hemophiliac man.
a. What proportion of the male children are hemophiliacs? \qquad
b. What proportion of the female children are hemophiliacs? \qquad

8. A phenotypically normal man marries a homozygous normal woman.
\qquad X \qquad
a. What is the probability that any of their children will be hemophiliacs? \qquad

9. A phenotypically normal woman has phenotypically normal parents. However, she has a hemophiliac brother. (Mom is carrier) (Dad) Brother
\qquad
a. What are her chances of being a carrier for hemophilia? \qquad

ANSWER THE FOLLOWING QUESTIONS USING YOUR KNOWLEDGE OF SEXLINKED TRAITS, THE BACKGROUND INFORMATION AND YOUR NOTES.
10. What is a sex-linked trait?
11. Why must males inherit colorblindness or hemophilia from their mothers?
12. Why is colorblindness or hemophilia more common in males than in females?

