Warm-Up: Skeletal Muscle Activity A (pp 188-195)

Short Answer

- 1. The gap between the motor neuron and the muscle fiber it supplies at the neuromuscular junction is called the _____. (*p* 188)
- 2. When a skeletal muscle is fully contracted, the ______ are closer to the thick filaments. (*p* 191)
- 3. A smooth, sustained contraction is called ______. (*p* 192-193)
- 4. Anaerobic glycolysis produces ATP in the absence of _____. (*p* 194)
- 5. Contractions in which muscles do not produce movement or shortening are termed _____. (p 195)

Multiple Choice: Identify the choice that best completes the statement or answers the question.

- 6. Acetylcholine is: (p 188)
 - (A) an ion pump on the postsynaptic membrane
 - (B) a source of energy for muscle contraction
 - © a component of thick myofilaments
 - (D) an oxygen-binding protein
 - (E) a neurotransmitter that stimulates skeletal muscle
 - 7. The gap between the axon terminal of a motor neuron and the sarcolemma of a skeletal muscle cell is called the: (*p* 188)
 - (A) motor unit synaptic cleft
 - (E) cross bridge
 - © neuromuscular junction
 - 8. Neurotransmitters are released upon stimulation from a nerve impulse by the: (p 188)
 - (A) myofibrils
 - (B) motor unit
 - (C) thick filaments

(B) sarcomere

- 9. Which of these events must occur first to trigger the skeletal muscle to generate an action potential and contract: (p 188)
 - (A) sodium ions rush into the cell
 - (B) acetylcholine (ACh) causes temporary permeability to sodium
 - © diffusion of potassium ions out of the cell
 - D operation of the sodium-potassium pump
 - (E) acetylcholinesterase (AchE) breaks down acetylcholine (ACh)

- (D) axon terminals of the motor neuron
- (E) sarcolemma of the muscle cell

- 10. Why are calcium ions necessary for skeletal muscle contraction: (*p* 191)
 - (A) calcium increases the action potential transmitted along the sarcolemma
 - B calcium releases the inhibition on Z discs
 - © calcium triggers the binding of myosin to actin
 - ② calcium causes ATP binding to actin
 - (E) calcium binds to regulatory proteins on the myosin filaments, changing both their shape and their position on the thick filaments
 - _____ 11. The mechanical force of contraction is generated by: (p 191)
 - (A) shortening of the thick filaments
 - B shortening of the thin filaments
 - © a sliding of thin filaments past thick ones
 - (b) the "accordian-like" folding of thin and thick filaments
 - (E) the temporary disappearance of thin filaments
- 12. Which of the following can actually shorten during a muscle contraction: (p 191)
 - (A) myosin filaments (D) sarcomeres
 - B A bands E myofilaments
 - © actin filaments
- 13. A single, brief, jerky muscle contraction is termed: (*p* 192)
 - (A) tetanus (D) isotonic
 - (B) twitch (E) anaerobic
 - © isometric
- 14. Creatine phosphate (CP) functions within the muscle cells by (p 193):
 - (A) forming a temporary chemical compound with myosin
 - B forming a chemical compound with actin
 - © inducing a conformational change in the myofilaments
 - (D) storing energy that will be transferred to ADP to resynthesize ATP as needed
 - (E) storing energy that will be transferred to ATP to resynthesize ADP as needed
- 15. The condition of skeletal muscle fatigue can be best explained by: (p 195)
 - (A) the all-or-none law
 - B the inability to generate sufficient quantities of ATP due to feedback regulation of synthesis
 - © insufficient intracellular quantities of ATP due to excessive consumption
 - D a total lack of ATP
 - (E) inadequate numbers of mitochondria